Search results for "mean curvature flow"
showing 10 items of 19 documents
A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow
2015
Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.
A sharp estimate of the extinction time for the mean curvature flow
2007
We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.
Short time existence of the classical solution to the fractional mean curvature flow
2019
Abstract We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C 1 , 1 -regular. We provide the same result also for the volume preserving fractional mean curvature flow.
Non-parametric mean curvature flow with prescribed contact angle in Riemannian products
2020
Assuming that there exists a translating soliton $u_\infty$ with speed $C$ in a domain $\Omega$ and with prescribed contact angle on $\partial\Omega$, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to $u_\infty +Ct$ as $t\to\infty$. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of $\Omega$ and Ricci curvature in $\Omega$.
Evolution by mean curvature flow of Lagrangian spherical surfaces in complex Euclidean plane
2016
We describe the evolution under the mean curvature flow of embedded Lagrangian spherical surfaces in the complex Euclidean plane $\mathbb{C}^2$. In particular, we answer the Question 4.7 addressed in [Ne10b] by A. Neves about finding out a condition on a starting Lagrangian torus in $\mathbb{C}^2$ such that the corresponding mean curvature flow becomes extinct at finite time and converges after rescaling to the Clifford torus.
Reilly's type inequality for the Laplacian associated to a density related with shrinkers for MCF
2015
Let $(\bar{M},,e^\psi)$ be a Riemannian manifold with a density, and let $M$ be a closed $n$-dimensional submanifold of $\bar{M}$ with the induced metric and density. We give an upper bound on the first eigenvalue $\lambda_1$ of the closed eigenvalue problem for $\Delta_\psi$ (the Laplacian on $M$ associated to the density) in terms of the average of the norm of the vector ${\vec{H}}_{{\psi}} + {\bar \nabla}$ with respect to the volume form induced by the density, where ${\vec{H}}_{{\psi}}$ is the mean curvature of $M$ associated to the density $e^\psi$. When $\bar{M}=\Bbb R^{n+k}$ or $\bar{M}=S^{n+k-1}$, the equality between $\lambda_1$ and its bound implies that $e^\psi$ is a Gaussian den…
Non-preserved curvature conditions under constrained mean curvature flows
2014
We provide explicit examples which show that mean convexity (i.e. positivity of the mean curvature) and positivity of the scalar curvature are non-preserved curvature conditions for hypersurfaces of the Euclidean space evolving under either the volume- or the area preserving mean curvature flow. The relevance of our examples is that they disprove some statements of the previous literature, overshadow a widespread folklore conjecture about the behaviour of these flows and bring out the discouraging news that a traditional singularity analysis is not possible for constrained versions of the mean curvature flow.
Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow
2020
We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with respect to the Hausdorff distance. This result is more general than the previous quantifications of the Alexandrov theorem, and using it we are able to show that in R2 and R3 a weak solution of the volume preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow, obtained via the minimizing movements scheme. peerReviewed