Search results for "mean curvature flow"

showing 10 items of 19 documents

A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow

2015

Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.

Dirichlet problemMean curvature flowMean curvatureApplied MathematicsBounded functionWeak solutionMathematical analysisMathematics::Analysis of PDEsp-LaplacianInverse mean curvature flowUniquenessAnalysisMathematicsJournal of Differential Equations
researchProduct

A sharp estimate of the extinction time for the mean curvature flow

2007

We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.

Dirichlet problemPointwiseMean curvature flowMean curvatureApplied MathematicsMathematical analysisCurvatureisoperimetric inequalityextinction timeNonlinear systemElliptic curveSettore MAT/05 - Analisi Matematicamean curvature motionIsoperimetric inequalityMathematics
researchProduct

Short time existence of the classical solution to the fractional mean curvature flow

2019

Abstract We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C 1 , 1 -regular. We provide the same result also for the volume preserving fractional mean curvature flow.

Mathematics - Differential Geometry01 natural sciencesclassical solutiondifferentiaaligeometriaMathematics - Analysis of PDEsfractional perimeterFOS: Mathematicsshort time existence0101 mathematicsMathematical PhysicsMathematicsosittaisdifferentiaaliyhtälötMean curvature flowApplied Mathematics010102 general mathematicsMathematical analysis010101 applied mathematicsVolume (thermodynamics)Differential Geometry (math.DG)Bounded functionfractional mean curvature flowFractional perimeterShort time existence53C44 35R11Mathematics::Differential GeometryClassical solutionAnalysisAnalysis of PDEs (math.AP)Fractional mean curvature flow
researchProduct

Non-parametric mean curvature flow with prescribed contact angle in Riemannian products

2020

Assuming that there exists a translating soliton $u_\infty$ with speed $C$ in a domain $\Omega$ and with prescribed contact angle on $\partial\Omega$, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to $u_\infty +Ct$ as $t\to\infty$. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of $\Omega$ and Ricci curvature in $\Omega$.

Mathematics - Differential GeometryApplied MathematicsMean curvature flowdifferentiaaligeometriamean curvature flowDifferential Geometry (math.DG)FOS: Mathematics111 MathematicsGeometry and TopologyMathematics::Differential Geometryprescribed contact angletranslating graphs53C21 53E10Analysis
researchProduct

Evolution by mean curvature flow of Lagrangian spherical surfaces in complex Euclidean plane

2016

We describe the evolution under the mean curvature flow of embedded Lagrangian spherical surfaces in the complex Euclidean plane $\mathbb{C}^2$. In particular, we answer the Question 4.7 addressed in [Ne10b] by A. Neves about finding out a condition on a starting Lagrangian torus in $\mathbb{C}^2$ such that the corresponding mean curvature flow becomes extinct at finite time and converges after rescaling to the Clifford torus.

Mathematics - Differential GeometryMean curvature flowApplied Mathematics010102 general mathematicsMathematical analysisTorusClifford torus01 natural sciencessymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesEuclidean geometrysymbolsFOS: MathematicsPrimary 53C44 53C40 Secondary 53D12010307 mathematical physics0101 mathematicsFinite timeMathematics::Symplectic GeometryAnalysisLagrangianMathematics
researchProduct

Reilly's type inequality for the Laplacian associated to a density related with shrinkers for MCF

2015

Let $(\bar{M},,e^\psi)$ be a Riemannian manifold with a density, and let $M$ be a closed $n$-dimensional submanifold of $\bar{M}$ with the induced metric and density. We give an upper bound on the first eigenvalue $\lambda_1$ of the closed eigenvalue problem for $\Delta_\psi$ (the Laplacian on $M$ associated to the density) in terms of the average of the norm of the vector ${\vec{H}}_{{\psi}} + {\bar \nabla}$ with respect to the volume form induced by the density, where ${\vec{H}}_{{\psi}}$ is the mean curvature of $M$ associated to the density $e^\psi$. When $\bar{M}=\Bbb R^{n+k}$ or $\bar{M}=S^{n+k-1}$, the equality between $\lambda_1$ and its bound implies that $e^\psi$ is a Gaussian den…

Mathematics - Differential GeometryMean curvature flowMean curvature53C42 52C21Applied Mathematics010102 general mathematicsMathematics::Spectral TheoryRiemannian manifoldSubmanifold01 natural sciencesInduced metricUpper and lower bounds010101 applied mathematicsCombinatoricsVolume formDifferential Geometry (math.DG)FOS: MathematicsHigh Energy Physics::ExperimentMathematics::Differential Geometry0101 mathematicsLaplace operatorAnalysisMathematicsJournal of Differential Equations
researchProduct

Non-preserved curvature conditions under constrained mean curvature flows

2014

We provide explicit examples which show that mean convexity (i.e. positivity of the mean curvature) and positivity of the scalar curvature are non-preserved curvature conditions for hypersurfaces of the Euclidean space evolving under either the volume- or the area preserving mean curvature flow. The relevance of our examples is that they disprove some statements of the previous literature, overshadow a widespread folklore conjecture about the behaviour of these flows and bring out the discouraging news that a traditional singularity analysis is not possible for constrained versions of the mean curvature flow.

Mathematics - Differential GeometryMean curvature flowMean curvatureConjectureEuclidean spaceSingularity analysis010102 general mathematicsMathematical analysisCurvature53C4401 natural sciencesConvexity010101 applied mathematicsMathematics - Analysis of PDEsDifferential Geometry (math.DG)Computational Theory and MathematicsFOS: MathematicsMathematics::Differential GeometryGeometry and Topology0101 mathematicsAnalysisAnalysis of PDEs (math.AP)Scalar curvatureMathematicsDifferential Geometry and its Applications
researchProduct

Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow

2020

We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with respect to the Hausdorff distance. This result is more general than the previous quantifications of the Alexandrov theorem, and using it we are able to show that in R2 and R3 a weak solution of the volume preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow, obtained via the minimizing movements scheme. peerReviewed

Mathematics - Differential Geometrymean curvature flowMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: Mathematicsminimizing movements35J93 53C44 53C45constant mean curvaturelarge time behaviorAnalysis of PDEs (math.AP)
researchProduct

On the plateau problem for surfaces of constant mean curvature

1970

Mean curvature flowMean curvatureApplied MathematicsGeneral MathematicsGeometryCenter of curvatureRadius of curvaturePlateau's problemMathematicsCommunications on Pure and Applied Mathematics
researchProduct

Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature

1974

Mean curvature flowMean curvatureGeneral MathematicsPrescribed scalar curvature problemMathematical analysisConstant-mean-curvature surfaceTotal curvatureSectional curvatureCurvatureScalar curvatureMathematicsMathematische Zeitschrift
researchProduct